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Abstract

In this article we introduce the multi-domain hybrid Spectral-WENO method aimed
at the discontinuous solutions of hyperbolic conservation laws. The main idea is to
conjugate the non-oscillatory properties of the high order weighted essentially non-
oscillatory (WENO) finite difference schemes with the high computational efficiency
and accuracy of spectral methods. Built in a multi-domain framework, subdomain
adaptivity in space and time is used in order to maintain the solutions parts exhibit-
ing high gradients and discontinuities always inside WENO subdomains while the
smooth parts of the solution are kept in spectral ones. A high order multi-resolution
algorithm by Ami Harten is used to determine the smoothness of the solution in
each subdomain. Numerical experiments with the simulation of compressible flow
in the presence of shock waves are performed.
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1 Introduction

The fine scale and delicate structures of physical phenomena related to tur-
bulence demand the utilization of high order methods when performing nu-
merical simulations. Spectral methods are nondispersive and nondissipative
and, therefore, well fitted to this task when the solutions involved are smooth.
However, in the modeling of compressible turbulent flows by means of the
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inviscid Euler Equations, the development of finite time discontinuities gen-
erates global O(1) oscillations, known as the Gibbs phenomenon, causes loss
of accuracy and numerical instability. Filtering of small scales has been used
to stabilize the spectral scheme in shock calculations [14], however the Gibbs
oscillations still remain in the solution.

In figure 1, the density of the Lax shock tube problem with Riemann initial
conditions was obtained with a Chebyshev collocation method stabilized with
a 16 th order Exponential filter. Note that the oscillations also occur at a
smaller scale on the edges of the rarefaction wave, due to the discontinuities
at the derivative of the density. The use of heavier filtering is not recommended
as it would remove the fine scale physical structures which are important for
the overall fidelity of the simulation.
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Fig. 1. The density of the Lax problem as computed by (Left) the Chebyshev col-
location solution with the Gibbs oscillations and (Right) the fifth-order character-
istic-wise WENO finite difference scheme. The exact solution is represented by the
solid line.

Reconstruction techniques such as the direct and inverse Gegenbauer expan-
sions (see [4,29] and references contained therein) have achieved some success
as a postprocessing treatment to remove the Gibbs oscillations. These tech-
niques followed the achievement of relevant theoretical results demonstrating
convergence properties of spectral approximations of discontinuous solutions.
For instance, Gottlieb and Tadmor [5] proved that, for linear problems, the mo-
ments of the numerical solution computed by spectral methods are spectrally
accurate. Lax [9] had argued that high order information about the solution
is contained in high resolution schemes, even for nonlinear problems. Hence
highly accurate essentially non-oscillatory solution can be extracted from the
seemingly oscillatory noisy data. Tadmor [11] showed the convergence of spec-
tral methods for nonlinear scalar equations. Nevertheless, the rapid growth
rate of the Gegenbauer polynomials cause several numerical problems which
are difficult to overcome. Very often, the domain must be subdivided in or-
der to apply the Gegenbauer reconstruction when dealing with complex and
localized flow structures.
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These numerical difficulties associated with the global spectral methods are
some of the main reasons why local nonlinear adaptive shock capturing finite
differences have been the method of choice when dealing with nonlinear conser-
vation laws. Among these, the most commonly used are the Essentially Non-
Oscillatory schemes (ENO) [22]. In order to avoid numerical oscillations, ENO
schemes bias the local stencil, discarding interpolations across discontinuities
when computing the tendencies of the numerical solution. The Weighted Es-
sentially non-Oscillatory (WENO) method ([24]) is an improvement over the
ENO method with the introduction of a convex combination of all the avail-
able stencils. WENO achieves optimal order of accuracy at smooth parts of
the solution with the same stencil size of ENO. Nevertheless, the intrinsic
numerical dissipation of WENO schemes, although necessary to properly cap-
ture shock waves, eventually damp relevant small scales, even when these are
smooth components of the solution. Figure 1 also shows a solution of the same
Lax problem obtained with a fifth order characteristic-wise WENO finite dif-
ference scheme. Note the smearing of the shock, the contact interface and of
the edges of the rarefaction wave. The numerical dissipation can be reduced
by increasing the number of points, as well as the order of the WENO scheme
which, however, would make the scheme expensive to apply. This would also
means waste of computational effort since it would not change the situation of
well resolved structures at the smooth regions of the solution. Moreover, the
fixed order of the finite differences does not provide the exponential resolution
of spectral schemes.

This article aims at the conjugation of the spectral and WENO methods when
solving hyperbolic equations with discontinuous solutions. The general idea is
to build a multi-domain scheme, forming a global adaptive mesh composed
of WENO and spectral subdomains in a way that discontinuities of the solu-
tion are always contained within WENO subdomains and the smooth com-
ponents remain in spectral ones. A smoothness measurement device triggers
the switching of the subdomains from spectral to WENO and reciprocally, ac-
cording to the local behavior of the solution. For instance, the algorithm takes
care of moving discontinuities by changing the spectral subdomains in their
way to WENO ones and switching WENO subdomains in their trails to spec-
tral subdomains, guaranteeing higher numerical efficiency than the classical
single-domain WENO method and non-oscillatory solutions when compared
to the classical single-domain spectral method. Moreover, the application of
spectral methods at smooth regions avoids the heavy machinery employed by
the characteristic-wise WENO finite difference algorithm such as the evalua-
tion of the Jacobian of the fluxes, the global Lax-Friedrichs flux splitting and
the forward and backward characteristics projections.

The multi-domain hybrid Spectral-WENO method (Hybrid) here proposed
can also be thought of as an improvement to the classical spectral method
by using the ”WENO technique” to approximate discontinuities, in the same
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way that physical filtering is used. Based on the multi-domain framework,
the Gibbs phenomenon is effectively avoided, since there will be no spectral
approximation of discontinuities, which also discards the need of any postpro-
cessing technique.

This paper is organized as follows: Approximation theory of Spectral meth-
ods is briefly discussed in Section 2. In Section 3, WENO Finite Differences
schemes are described and Harten’s multi-resolution algorithm is presented in
Section 4. The Hybrid method along with its interfaces treatment and subdo-
main switching procedure are introduced in Section 5. In Section 6, we apply
the Hybrid method to the standard shock-tube problems with Riemann ini-
tial data, to the Shock-Entropy wave interaction and the Blastwave problems.
Conclusions are given in Section 7.

2 Spectral Methods

We start this section with a quick description of Galerkin and collocation spec-
tral methods, which in their simplest forms, make use of a global smooth basis
{φk(x), k = 0, . . . , N} to represent the numerical solution. After that, we dis-
cuss the Gibbs Phenomenon for piecewise smooth functions and the utilization
of filtering to stabilize the spectral discretization of hyperbolic conservation
laws.

2.1 Spectral Collocation Methods

In the Galerkin approach, the function f(x) is projected into the set of basis
function φk(x) as

PNf(x) =
N
∑

k=0

akφk(x), (1)

where PN is the projection operator. The coefficients ak are

ak =
∫

f(x)φk(x)w(x)dx, (2)

with the appropriate weight function w(x) that depends on the nature of the
physical solution:

• For periodic problems, the natural basis functions are the trigonometric
polynomials of degree k, φk(x) = eiπkx with weight function w(x) = 1 and
x ∈ [−1, 1).
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• For non-periodic problems in a finite domain x ∈ [−1, 1], Chebyshev poly-

nomials φk(x) = Tk(x) with w(x) = (1 − x2)−
1
2 or, Legendre polynomials

φk(x) = Lk(x) with w(x) = 1 are the most used bases.

The collocation version of spectral methods approximates a function f(x) by
an interpolating polynomial given by

INf(x) =
N
∑

k=0

akφk(x), ak =
N
∑

i=0

ωif(xi)φk(xi), (3)

where IN is the interpolation operator, xi and ωi are the Gauss-Lobatto
quadrature nodes and weights respectively (Gauss-Radau and Gauss nodes
can also be used). Alternatively,

INf(x) =
N
∑

j=0

f(xj)gj(x), (4)

where gj(x) are the cardinal functions: (trigonometric) Lagrangian interpo-
lation polynomials of degree N such that gj(xi) = δij. For the Lagrangian
interpolation polynomials based on the Chebyshev Gauss-Lobatto points xi =
cos(πi/N), i = 0, . . . , N , the cardinal functions are given by

gj(x) =
(−1)j+1(1 − x2)T ′

N
(x)

cjN2(x − xj)
, (5)

where c0 = cN = 2, cj = 1, j = 1, . . . , N − 1 and TN(x) is the N th de-
gree Chebyshev polynomial of the first kind. The derivatives of f(x) at the
collocation points xi can be computed via equations (3) or (4). The former
makes use of the fast cosine transform (CFT) algorithm and the latter uses a
matrix-vector algorithm. More details can be found in [1].

2.2 Conservation Laws: Gibbs Phenomenon and Filtering

The approximation error in spectral methods depends only on the regularity
of the approximated function. A typical error estimate is of the form

|f(x) − PNf(x)| ≤ CN
1
2
−p

(∫ 2π

0
|f (p)(ξ)|2dξ

)

1
2

, (6)

where C is a constant independent of N and f (p) denotes the p th derivative of
f . We see that the approximation error decays as O(N−p) for any Cp function
and if the function is analytic then

|f(x) − PNf(x)| ≤ Ce−αN , (7)
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for some α > 0, resulting in exponential convergence. Similar results hold for
the pseudospectral (collocation) formulation. However, in the case of piecewise
smooth functions, the order of accuracy is reduced to O(1) due to the well
known Gibbs phenomenon.

Figure 2 shows the Fourier collocation approximations to a sawtooth function
with a discontinuity at x = 0. Note that the over- and under-shoot oscillations
do not decrease with the increasing number of grid points N .
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Fig. 2. Gibbs phenomenon in the spectral approximation of a sawtooth function.

Other important features of spectral methods are their inherent non-dissipativity
and non-dispersiveness, which are good properties when important conserva-
tion principles need to be respected at the numerical level. This lack of dissi-
pation, however, becomes an issue when dealing with discontinuous solutions
of conservation laws, in particular, when spectral methods are applied to non-
linear hyperbolic equations in the conservation form and the problem of an
entropy satisfying solution arises. In fact, there is no artificial dissipation in
spectral methods to indicate that their solutions are limits of a dissipative
process. This problem had been addressed in [12] and the references contained
therein, where it has been shown that with a suitable addition of a spectrally
small dissipation to the high modes, the method is stable and entropic solu-
tions are obtained.

The utilization of low pass filtering in spectral methods helps both to mitigate
the Gibbs phenomenon and to introduce the necessary artificial dissipation for
hyperbolic problems. Considering the Fourier approximation (The process is
analogous for the Chebyshev case):

fN(x) =
N
∑

k=−N

ake
iπkx, x ∈ [−1, 1), (8)

filtering is introduced by means of the modified sum

fσ
N
(x) =

N
∑

k=−N

σ

(

k

N

)

ake
iπkx , (9)
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where, following Vandeven [13], σ(ω) is a p th order, p > 1, Cp[−1, 1], filter
function satisfying

σ(0) = 1 , σ(±1) = 0 ,

σ(j)(0) = 0 , σ(j)(±1) = 0 , j ≤ p,
(10)

where σ(j) denotes its j th derivative.

It has been shown in [13] that the filtered sum (9) approximates a discontin-
uous function in smooth regions with exponential accuracy.

In this work we make use of the Exponential filter function

σ(ω) = exp
(

−α|ω|β
)

, (11)

where −1 ≤ ω = k/N ≤ 1, |k| = 0, . . . , N ,β is the order of the filter and
α = − ln ε, where ε is the machine zero. In figure 3 the solution of the period-
ical inviscid Burgers equation is obtained with a Fourier collocation method
stabilized with a 16 th order Exponential filter.
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Fig. 3. (Left)Exact and Fourier spectral solution of the Burgers equation with a
16 th order Exponential filter and N = 128 collocation points. (Right) Convergence
of the solution with N = 128, 256, 512. The error is in the log10 scale.

It is worth saying that no amount of filtering other than a heavy one (p ≤ 2),
can remove the Gibbs oscillations from the solution. The use of such a filter,
however, also incurs in removal of small and median scale structures rendering
the solution unusable and inaccurate.

In practice, when solving differential equations one uses a high order Expo-
nential filter at every time step to maintain stability and a post-processing
technique [4,27,29] at the end of the calculation to recover a non-oscillatory
solution from the oscillatory one. These post-processing techniques, however,
are not practical, particularly, for multi-dimensional problems. As it is evident
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from figure 3, in order to recover the full accuracy in any region where the
function is continuous, one has to use a different idea. In the next section we
introduce non-oscillatory finite differences schemes as the next step to build
this new idea in the form of a hybrid scheme.

3 Weighted essentially non-oscillatory schemes

In this section we describe essentially non-oscillatory conservative finite differ-
ence schemes to be applied at systems of conservation laws described by the
general equation:

ut + f(u)x = 0. (12)

We will first present a general high order conservative central scheme approx-
imation to (12). After that, we will describe the adaptive stencil choosing
process of ENO and WENO schemes that leads to their non-oscillatory prop-
erties.

3.1 Conservative Schemes

Being conservative is an important property of a numerical approximation due
to the Lax–Wendroff theorem which states that numerical solutions of conser-
vative schemes, whenever they converge, they converge to weak solutions of
the conservation law [9].A conservative finite-difference formulation for hyper-
bolic conservation laws requires high-order consistent numerical fluxes at the
cell boundaries in order to form the flux difference across the uniformly-spaced
cells.

Consider an uniform grid defined by the points xi = i∆x, i = 0, . . . , N , which
are also called cell centers, with cell boundaries given by x

i+
1
2

= xi ±
∆x
2

.

Equation (12) is semi-discretized in time by the method of lines, yielding the
following system of ordinary differential equations

dui(t)

dt
= −

∂f

∂x

∣

∣

∣

∣

∣

x=xi

, i = 0, . . . , N, (13)

where ui(t) is a numerical approximation to the cell center value u(xi, t).

The conservative property of the spatial discretization is obtained by implicitly
defining a numerical flux function h(x) as

f(x) =
1

∆x

∫ x+∆x

2

x−∆x

2

h(ξ)dξ, (14)
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such that the spatial derivative in (13) is exactly approximated by a conser-
vative finite difference formula at the cell boundaries,

dui(t)

dt
=

1

∆x

(

h
i+

1
2
− h

i−
1
2

)

, (15)

where h
i±

1
2

= h(x ± ∆x
2

). High order polynomial interpolations to h
i±

1
2

are

computed using known grid values of f .

Note that the order of the polynomial interpolation of h
i±

1
2

will set the order

of the spatial approximation of the overall scheme (15). Due to the symmetry
of the stencils used for the polynomial interpolations, the order of approxima-
tion of the right-hand side of (15) will be the same order of the polynomial
approximation of h(x), even after division by ∆x, and not, as expected, one
order less.

Let us now solve the problem of finding a k th order central polynomial ap-
proximation to h

i+
1
2
. Let

ĥ(x) = a0 + a1x + · · · + ak−1x
k−1 (16)

be a (k − 1) th degree polynomial approximation to h(x) and f̂(x) be the
polynomial (also of degree k − 1) obtained by integration of (14) after the
substitution of h(x) by ĥ(x). The polynomial coefficients are found after eval-
uating f̂(x) at the grid points of any k nodes stencil around x

i+
1
2
. For in-

stance, if k = 3, the coefficients a0, a1, a2 can be obtained as functions of the
grid point values fi−1, fi and fi+1. Once the coefficients are found, the values
f

i±
1
2

= h
i±

1
2

+ O(∆xk) can be computed and substituted into (15).

The scheme above is centralized at x
i+

1
2

only if k is even, otherwise, it is shifted

a half-cell to the left (upstream) or to the right (downstream). One often
takes the upstream version of an odd order central scheme due to the inherent
dissipation of upstream schemes, necessary to shock-capturing. For the sake
of completeness, let us now take the case k = 5 and make the computations
to obtain the 5 th order approximation to the spatial derivative in (15).

Thus, after substitution of a 4 th order polynomial in (14) and integration,
we obtain

f̂(x) = a0+a1x+a2

(

x2 +
∆x2

12

)

+a3

(

x3 +
x∆x2

4

)

+a4

(

x4 +
x2∆x2

2

)

, (17)

which, if computed at the nodes {xi−2, . . . , xi+2} will determine the coefficients
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{a0, . . . , a4} in terms of {fi−2, . . . , fi+2}, yielding

f̂
i+

1
2

=
1

60
(2fi−2 − 13fi−1 + 47fi + 27fi+1 − 3fi+2) , (18)

and, analogously,

f̂
i−

1
2

=
1

60
(2fi−3 − 13fi−2 + 47fi−1 + 27fi − 3fi+1) . (19)

Both are 5 th order approximations to h
i+

1
2

and h
i−

1
2
, respectively:

f̂
i±

1
2

= h
i±

1
2
−

∆x5

60

d5f

dx5

∣

∣

∣

∣

∣

x=xi

+ O(∆x6). (20)

The leading error order is the same for both stencils, so they will cancel out
after substitution of (18) and (19) at (15), yielding a 5 th order approximation
as pointed out beforehand.

3.2 WENO Convex Combination of Stencils

The central finite difference scheme presented above will suffer from spurious
oscillations if discontinuities are inside the interpolating stencils. The main
idea of ENO schemes is to bias as much as necessary the central scheme to
avoid the inclusion of the shock inside the stencil. For instance, a k th order
ENO approximation assigns smoothness weights to all k nodes stencils around
the interpolating point and chooses the smoothest one to perform k th order
polynomial interpolations of the numerical flux.

Let us identify a particular stencil by its left-shift r. We have a polynomial
interpolation to h

i+
1
2

for each r, given by

f̂r(x
i+

1
2
) =

k−1
∑

j=0

crjfi−r+j = h(x
i+

1
2
) + O(∆xk), (21)

where the crj are the Lagrangian interpolation coefficients ([24]). The crj de-
pend on the order k of the approximation and also on the left-shift parameter r,
but not on the values fi. Since r can vary from 0 to k − 1, we have k distinct
interpolating polynomials to choose from; all of them yielding a k th order
approximation, once f is smooth inside the intervals considered. The above
process is called the reconstruction step, for it reconstructs the values of h(x)
at the cell boundaries of the interval Ii = [x

i−
1
2
, x

i+
1
2
] from the cell average val-

ues f(x) in the intervals Sr = {
⋃k−1

j=0 Ii−r+j , r = 0, . . . , k− 1} = {xi−r, ..., xi+s}
with s = k − r − 1.
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However, at smooth regions, the collection of all k stencils carry information
for an approximation of order higher than k. The Weighted Essentially Non-
Oscillatory scheme (WENO) is an improvement over ENO for it uses a convex
combination of all available polynomials for a fixed k, assigning zero weights
to stencils containing discontinuities. This yields a (2k − 1) order scheme at
smooth parts of the solution. The general WENO flux f̂

i+
1
2

is defined as

f̂
i+

1
2

=
k−1
∑

r=0

ωrf̂r(x
i+

1
2
), (22)

where

ωr =
αr

∑k−1
l=0 αl

with αr =
Cr

(ε + ISr)p
. (23)

Here, Cr are the ideal weights for the convex combination, the ones that at
the absence of discontinuities provide a (2r − 1) th order of approximation at
(22) ([24]); ε = 10−10 is a small parameter to avoid division by zero, p = 2 is
chosen to increase the difference of scales of distinct weights at non-smooth
parts of the solution and ISr is a measure of the smoothness of polynomials
on the r th stencil:

ISr =
k−1
∑

l=1

|∆x|2l−1
∫ x

i+
1
2

x
i−

1
2

(

dl

dxl
f̂r(x)

)2

dx. (24)

When the interpolating polynomial on a given stencil is smooth, the smooth-
ness indicator ISr is relatively much smaller than those of stencils where the
polynomial has discontinuities in its first k − 1 derivatives. Therefore, discon-
tinuous stencils receive a close to zero weight, αr ≈ 0, and a non-oscillatory
property is achieved.

Remark 1 There are different choices for the smoothness indicator ISk and
Taylor analysis reveals relevant properties of each of them. The first one was
proposed in [24] and was based on divided differences. In [6], an improvement
over (24) was proposed in order to increase the accuracy of the scheme at
critical points (zero derivatives) of the solution.

For a system of Conservation Laws such as the Euler equations, the eigen-
vectors and eigenvalues of the Jacobian of the flux are computed via the Roe
Average method. Global Lax-Friedrichs flux splitting is used to split the flux
into its positive and negative components. Artificial dissipation based on the
modulus of the eigenvalues is added in order to obtain a smoother flux. The
resulting positive and negative flux components are then projected into the
characteristic fields using the left eigenvectors to form the positive and nega-
tive characteristic variables at each grid cell center. Then, high-order WENO
polynomial reconstruction, as described above, is used to obtain these char-
acteristic variables components at the grid cell boundaries, which, after sum-
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mation, are finally projected back to physical space via the right eigenvectors.
The details of this algorithm can be found in [24]. These characteristic vari-
ables projections are the expensive part of the WENO scheme when applied
to systems of equations. They are necessary because high order approxima-
tion is not achieved within the framework of the conservative variables. A
hybrid Spectral-WENO scheme would save substantial computational effort
by avoiding the characteristic projections at all smooth parts of the solution.

4 Multi-Resolution Analysis

The successful implementation of the Hybrid method depends on the ability
to obtain accurate information on the smoothness of a function. In this work,
we employ the Multi-Resolution (MR) algorithms by Harten [22,23] to detect
the smooth and rough parts of the numerical solution. The general idea is
to generate a coarser grid of averages of the point values of a function and
measure the differences (MR coefficients) di between the interpolated values
from this sub-grid and the point values themselves. A tolerance parameter εMR

is chosen in order to classify as smooth those parts of the function that can
be well interpolated by the averaged function and as rough those where the
differences di are larger than the parameter εMR. We shall see that the order of
interpolation is relevant and the ratio between di of distinct orders may also
be taken as an indication of smoothness.

Let us start by showing two examples where one can notice the detection
capabilities of the Multi-Resolution analysis that will be presented below.
The left and right figures of figure 4 show the piecewise analytic function

f(x) =



























10 + x3 −1 ≤ x < −0.5

x3 −0.5 ≤ x < 0

sin(2πx) 0 ≤ x ≤ 1

, (25)

and the density (ρ) of the Mach 3 Shock-Entropy wave interaction problem
[24], as computed by the classical fifth order WENO finite difference scheme,
respectively.

The test function (25) has a jump discontinuity at x = −0.5 and a disconti-
nuity at its first derivative at x = 0. One can see that at each grid point the
differences di decay exponentially to zero inside the analytical pieces of the
function when the order of interpolation increases from nMR = 3 to nMR = 8.
At the discontinuity x = 0.5, the measured differences di are O(1) and remain
unchanged despite the increase of the interpolation order. Similar behavior is
exhibited at the derivative discontinuity at x = 0 with a smaller amplitude.
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Fig. 4. (Left) The third and eighth order MR coefficients di of the piecewise analytic
function. (Right) The third, fifth and seventh order MR coefficients di of the density
f(x) = ρ of the Mach 3 Shock-Entropy wave interaction problem.

Also, in the right figure of figure 4, the density of the Mach 3 Shock-Entropy
wave interaction problem and the corresponding MR coefficients di are shown
for the third, fifth and seventh order Multi-Resolution analysis. The location
of the main shock is at x ≈ 2.73 and the shocklets behind the main shock are
well captured. The high frequencies behind the main shock are much better
distinguished with the higher orders.

Averaging a function corresponds to filter the upper half of the spectrum. The
main idea of Hartens smoothness classification is to measure how distant the
actual values of the function are from being predicted through interpolation
of the lower half of the frequencies contained in the sub-grid of averages.
We now describe a detailed construction of the sub-grid of averages and its
corresponding interpolating polynomial, finishing with a worked example.

Given an initial number of grid points N0 and grid spacing ∆x0, consider the
set of nested dyadic grids {Gk, 0 ≤ k ≤ L}, defined as:

Gk = {xk
i , i = 0, . . . , Nk}, (26)

where xk
i = i∆xk, ∆xk = 2k∆x0, Nk = 2−kN0. For each level k > 0 we define

the set of cell averages {f̄k
i , i = 1, . . . , Nk} at xk

i of a function f(x):

f̄k
i =

1

∆xk

∫ xk

i

xk

i−1

f(x)dx, (27)

and f̄ 0
i = f 0

i . Let f̃k
2i−1 be the approximation to f̄k

2i−1 by the unique polynomial
of degree 2s that interpolates f̄k

i+l, |l| ≤ s at xk
i+l, where r = 2s+1 is the order

of approximation.

The approximation differences, also called multiresolution coefficients, dk
i =

f̄k−1
2i−1 − f̃k−1

2i−1, at the k th grid level and grid point xi, have the property that
if f(x) has p − 1 continuous derivatives and a jump discontinuity at its p th
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derivative, then

dk
i ≈











∆xp
k[f

(p)
i ] for p ≤ r

∆xr
kf

(r)
i for p > r

, (28)

where [·] denotes the magnitude of the jump of the function inside.

From formula (28) it follows that

|dk−1
2i | ≈ 2−p̄|dk

i |, where p̄ = min{p, r}. (29)

Equation (29) shows that away from discontinuities, the MR coefficients dk
i

diminish in size with the refinement of the grid; close to discontinuities, they
remain the same size, independent of k. The MR coefficients dk

i were used in
[23] in two ways. First, finer grid data f̄ 0

i were mapped to its M level mul-
tiresolution representation f̄ 0

i = (d1
i , · · · , dM

i , f̄M

i ) to form a multiscale version
of a particular scheme, where truncation of small quantities with respect to a
tolerance parameter decreased the number of flux computations. Secondly, the
MR coefficients dk

i also acted as a shock detection mechanism and an adaptive
method was designed where a second-order Lax-Wendroff scheme was locally
switched to a first-order accurate TVD Roe scheme, whenever d1

i was bigger
than εMR.

Equation (28) also indicates that the variation of the MR order, nMR, can give
additional information on the type of the discontinuity. Nevertheless, in this
work, we will be limited at using only the first level k = 1 of the multiresolution
coefficients and we shall drop the superscript 1 from the d1

i from here on unless
noted otherwise.

Hence, to find di, the idea is to construct a piecewise polynomial Pk(x) of
degree k = nMR using k + 1 computed average values of fi, f̄i, at the equi-
spaced grid xi such that

Pk(xi) = f(xi) + O(∆xk+1), (30)

and

di = fi − Pk(xi). (31)

Given a tolerance level εMR, the smoothness of the function f(x) at xi would
then be checked against the magnitude of the di, namely:











|di| ≤ εMR ⇒ solution is smooth.

|di| > εMR ⇒ solution is non-smooth.
(32)

The algorithm for computing the MR coefficients di is given next.
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4.1 Computing the MR Coefficients

Consider an equi-spaced grid {xi = i∆x, i = −m, . . . , 0, . . . , N, . . . , N + M}
where ∆x is the constant grid spacing. N can be an odd or an even number.
Depending on N and the even or odd order of the MR Analysis nMR, the
number of ghost points m and M required are given in table I.

N nMR m M

odd odd nMR + 1 nMR + 1

even odd nMR + 1 nMR

odd even nMR nMR + 2

even even nMR nMR + 1

Table I
The number of ghost points m and M required for the MR Analysis.

Given the grid point values of the function f(x), the average values are com-
puted as

f̄i = 1
2
(f2i + f2i+1) , i = −

m

2
, . . . ,

N + M − 1

2
. (33)

We construct a piecewise k = nMR degree polynomial Pk(x) using the k + 1
computed average values of the given function, f̄i such that

Pk(xi) = f(xi) + O(∆xk+1). (34)

The polynomial Pk(xi), l = 1
2
m and L = l − 1 or L = l if k is odd or even,

respectively, can be written as

Pk(xi) =
i+L
∑

r=i−l

αrf̄r. (35)

However, since the coefficients α depend only on xi and do not depend on the
function f(x), the Pk(xi) can be written as:

Pk(xi) =











∑L
r=−l αrf̄i+r, mod(i, 2) = 0

∑L
r=−l βr+1f̄i+r, mod(i, 2) = 1

. (36)

In the case of mod(i, 2) = 1,

β−r = αr, r = −l, . . . , L. (37)

Furthermore, if nMR is even, the coefficients α are symmetric about r = 0,
namely, α−r = αr, r = 1, . . . , L.
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The desired coefficients α are computed by requiring Pk(x) to be equal to
each of the first k + 1 monomials f(x) = 1, x, x2, . . . , xk and evaluated at any
grid point x = x∗. For simplicity, we take x∗ = 0. The f̄i are evaluated for
i = −l, . . . , L. This procedure results in a system of linear equations, A~α = ~b,
where

A =





















1 . . . 1

−2l + (−2l + 1) . . . 2L + (2L + 1)
...

...
...

(−2l)k + (−2l + 1)k . . . (2L)k + (2L + 1)k





















,−→α =





















α−l

α−l+1

...

αL





















,
−→
b =





















1

0
...

0





















,

(38)
and A is a matrix of size (L + l + 1) × (L + l + 1).

Using (36), the k-th order Multi-Resolution coefficients di at xi can be com-
puted as

di = fi − Pk(xi) i = 0, . . . , N. (39)

One can also evaluate the α by matching the terms in the Taylor series ex-
pansion using (34) and (35) to any desired order, however this procedure may
become cumbersome for high order k.

Example

To illustrate the procedure above, we will construct two unique local poly-
nomials with k = nMR = 3, such that Pk(x0) = f(x0) + O(∆xk+1) and
Pk(x1) = f(x1) + O(∆xk+1).

To construct the desired polynomials one needs to find the unique coefficients
{α−2, α−1, α0, α1} and {β−1, β0, β1, β2} such that

α−2f̄−2 + α−1f̄−1 + α0f̄0 + α1f̄1 = f(x0) + O(∆x4) (40)

and

β−1f̄−1 + β0f̄0 + β1f̄1 + β2f̄2 = f(x1) + O(∆x4). (41)
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The system of equations, (38), becomes

A =





















1 1 1 1

−7 −3 1 5

25 5 1 13

−91 −9 1 35





















, −→α =





















α−2

α−1

α0

α1





















,
−→
b =





















1

0

0

0





















. (42)

Solving this system yields

α−2 = −
3

64
, α−1 =

17

64
, α0 =

55

64
, α1 = −

5

64
, (43)

and {β−1 = α1, β0 = α0, β1 = α−1, β2 = α−2}.

Remark 2 The tolerance parameter εMR determines the dynamic activation
of the spectral and WENO spatial discretizations along the various subdomains
of the hybrid method. While a too small value of εMR activates the more ex-
pensive WENO method at subdomains where the solution is smooth, a larger
value activates the spectral method at a subdomain with low spatial resolution,
generating oscillations. εMR also bears a straight relation with the interpola-
tion order nMR. High nMR values decrease the size of εMR one needs to chose,
since high frequencies are less mistaken by gradient jumps. The general guide-
line is to start with a value for nMR at least equal to the order of the WENO
method and increase it according to the complexity of the solution. For in-
stance, nMR = 5 is a good choice for the piecewise smooth solution of the SOD
problem, the Entropy problem would work better with nMR = 7. For most of
the flows with shock that were tested, the value of εMR = 10−3 yielded a good
balance between computational speed and accuracy of the numerical solution.

5 The Multi-Domain Hybrid Spectral–WENO Method

The main idea is straightforward:

Partition the physical domain into a number of equal sized subdomains, avoid
Gibbs phenomenon by treating discontinuities with shock capturing non-oscillatory
WENO methods and increase the numerical efficiency by treating the smooth
parts of the solution in with spectral methods.

In the case of a stationary discontinuity, one only needs appropriate interface
conditions to transmit data between the subdomains. A moving shock situ-
ation requires in addition a smoothness measurement routine to keep track
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of the high gradients but also a subdomain switching algorithm in order to
change spectral domains to WENO ones, once the shock gets closer to them,
and switch back WENO subdomains to spectral ones, once the shock leaves
them. These same tools will do the work in the case when discontinuities are
being created in spectral subdomains, as we shall see later in Section 6, when
we simulate the interaction of a Mach 3 shock with a sinusoidal density wave.
In this section we describe the necessary treatment of the interfaces between
the subdomains and the algorithm used to switch the type of a subdomain,
from WENO to spectral and vice versa.

5.1 Interfaces treatment

One of the main components of the Hybrid scheme is the exchange of infor-
mation at the interfaces between subdomains that might be of distinct types.
The correct setting of these interfaces is of great relevance in order to avoid
loss of accuracy or numerical oscillations that could contaminate the solution.
The Hybrid scheme deals with three types of such interfaces, namely,

(1) Spectral–Spectral interface;
(2) Spectral–WENO interface;
(3) WENO–WENO interface.

We shall denote the grid points of the left and right subdomains by x and y,
respectively. The functional values at these points are denoted by s and w for
spectral and WENO subdomains, respectively. NS and NW are the number of
Chebyshev collocation points of the spectral grid and the number of uniformly
spaced grid points of the WENO subdomain, respectively.

Spectral–Spectral Interface

At a Spectral–Spectral interface the solution is assumed to be smooth, oth-
erwise the switching algorithm presented in the next subsection would have
changed the subdomains to a WENO one. This fact, along with the high order
accuracy of the spectral solutions in each subdomain k, ensures that a simple
average of the two functional values is sufficient for obtaining continuity of the
solution across the interface for the Euler Equations, that is,

sk

0 = sk+1
NS

= 1
2

(

sk

0 + sk+1
NS

)

. (44)

Other types of interface conditions, such as the imposition of the solution of
the Riemann problem at the spectral-spectral interface, yielded no discernible
differences in the cases tested.
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Spectral–WENO interface

At a Spectral–WENO (WENO–Spectral) interface, the ghost points of the
WENO grid {y−r, . . . , y−1}, where r is the number of WENO ghost points, in
the subdomain k, are inside the spectral subdomain k− 1; and the end point
of the spectral subdomain k − 1, x0, is in between the first ghost point y−1

and the first interior point y0 of the WENO grid in subdomain k. The spectral
point and all the WENO ghost points need to be adjusted for continuity of
the solution at the interface. The idea is to use information of the spectral
subdomain to interpolate at the ghost points and, after that, to interpolate
the spectral boundary point using the surrounding WENO grid points, as
detailed here:

• The solution values at the ghost points of the WENO subdomain are com-
puted via spectral interpolation using the data (s(x0), . . . , s(xNS

)) of the
spectral subdomain. That is,

w(yi) =
NS
∑

j=0

s(xj)gj(yi), i = −r, . . . ,−1, (45)

where gj(x) is the Lagrangian interpolation polynomial of degree NS (see
equation 5).

• The functional value of the spectral grid at x0 is obtained through a poly-
nomial interpolation using the functional values of the interior points and
the updated ghost points of the WENO subdomain. The degree of the in-
terpolating polynomial should match the order of the WENO method.

The hierarchy of interpolation above does matter. We first generate the ghost
points of the WENO grid because these are inside the spectral subdomain
and, therefore, must agree with the spectral solution. Generating the spectral
endpoint x0 at first would use wrong information from the ghost points. The
case of a WENO–Spectral interface is completely analogous and one should
also respect the same interpolation hierarchy as above: ghost points first.

WENO–WENO Interface

It will be through the interface between WENO subdomains where possible
discontinuities in the solution are going to be transmitted. In [16], numerical
experiments show that WENO or Lagrangian interpolation are not conserva-
tive if the neighboring subdomains have different grid spacing ∆x and that,
once this condition is satisfied, both interpolations are conservative and be-
have equivalently. In this work, we only consider WENO subdomains with the
same grid spacing ∆x in order to avoid such complications. This restriction
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also makes ghost points of a subdomain to coincide with interior points of the
neighboring subdomain and, for practical matters, both subdomains can be
treated as a single larger subdomain with no interface, allowing shocks to pass
through as if they were ”walking” at interior points of a WENO discretization.
If we denote by wL and wR the functional values of the left and right WENO
subdomains, respectively, we have:











wL
NW +i = wR

i

wR
−i = wL

NW−i

, i = 1, . . . , r, (46)

where NW and the size of the adjacent WENO subdomains are assumed to be
the same.

Example

Let us now show by means of a numerical example that the hybrid method with
the above interface conditions is an improvement over the classical WENO
scheme. Consider the inviscid Burgers equation











ut + 1
2
(u2)x = 0 − 1 < x < 1,

u (x, 0) = 0.3 + 0.7 sin (πx) ,
(47)

with periodic boundary condition. The initial configuration will quickly evolve
into a moving shock, however, at this point we will analyze the pre-shock error
in order to show that the superior accuracy of the spectral scheme improves
the WENO error as we see in figure 5. For the classical WENO method we
discretize the interval [−1, 1] with 400 points. For the Hybrid method, the
interval is subdivided into three equal sized subdomains, where the middle
one, [−0.3, 0.3], is a spectral subdomain. The subdomains configuration is kept
fixed, since no shock will arise during the time interval of the experiment.

The number of points in the WENO subdomains are the same as the corre-
sponding regions of the classical WENO, so any increase of accuracy must be
due to the spectral subdomain. Note that not only the error at the spectral
subdomain is smaller than the one of the classical WENO, but it also forces
the decreasing of the overall error, showing its superior performance and also
the conservation properties of the interface conditions. Another aspect that
should be noticed is the globality of the spectral scheme that can be observed
when looking to the uniformity of the error at the spectral subdomain.
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Fig. 5. (Dashed line) Inviscid Burgers Equation solution; (Continuous line) Error
of the fifth-order classical WENO with 400 points; (Symbols) Error of the Hybrid
method.

5.2 The Switching Algorithm

In this section we describe the subdomain switching algorithm. Since we are
interested in solving unsteady moving shocked flows, the subdomains must be
able to switch from one type of subdomain to the other, as dictated by the
smoothness of the solution and determined by the Multi-Resolution Analysis
of Section 4.

Each WENO subdomain must have a ”Buffer Area” in order to detect outgo-
ing shocks or high gradients and ”warn” the immediate neighboring spectral
subdomains to switch to WENO type. The ”Buffer Area” for a given WENO
subdomain is defined as two sets of grid points at either ends of the subdo-
main, namely, B0 = {x0, . . . , xNB

} and B1 = {xNW −NB+1, . . . , xNW
}. As greater

as is the value of the number of ghost points, NB, earlier is the detection of
shocks and gradients, however, at the cost of earlier switching of the adjacent
spectral subdomains and greater chance of unnecessary costly computations.
Satisfactory results have been obtained with the default value NB = r, the
number of ghost cells used in the given order of the WENO scheme in this
study. It should be noted that the grid points in the ”Buffer Area” are part
of the interior grid points and should not be confused with the WENO ghost
points.

For the switching algorithm, the three conditions below are the main rules to
be followed:

(1) If a subdomain contains high gradients, then switch its spatial discretiza-
tion to (or keep it as) WENO;

(2) If high gradients are present in the ”Buffer Areas” of neighboring sub-

21



domains, then switch the current subdomain to (or keep it as) a WENO
subdomain;

(3) In any other case, switch the subdomain to (or keep it as) a spectral
subdomain;

The first condition above avoids the Gibbs phenomenon, keeping the disconti-
nuities inside WENO subdomains. The second condition ensures the switching
to WENO subdomain in order to allow only WENO-to-WENO transmission of
high gradients. The third condition improves the numerical efficiency, since it
ensures that smooth parts of the solution will always be contained in spectral
subdomains.

Multi-Resolution analysis of the solution is performed at the beginning of every
step of the associated temporal scheme, in our case, a third order Runge-Kutta
scheme, as described in Section 6 below. At each subdomain k, we define the
smoothness flag variable, Flagk

i , at each grid point xi excluding the ghost
points, as,

Flagk

i =











1, |dk

i | > εMR

0, otherwise
, i = 0, . . . , NW , (48)

where dk

i are the MR coefficients. Since the Multi-Resolution Analysis requires
uniformly spaced grids, the spectral grids are first interpolated to uniformly
spaced grids before obtaining the MR coefficients dk

i . The necessary ghost
points are acquired from the neighboring subdomains. At the boundary sub-
domains, the values of the boundary ghost points are extrapolated linearly
from the interior data.

The algorithm proceeds by checking for each spectral subdomain k and at the
Buffer Areas of the neighboring subdomains k−1 and k+1, if any of {Flagk

i , i =
0, . . . , NW}, {Flagk+1

i , i = 0, . . . , NB} or {Flagk−1
i , i = NW − NB + 1, . . . , NW}

is equal to one. If so, it switches subdomain k to a WENO discretization.
Otherwise, a spectral discretization is implemented, or kept. These switches
require the use of interpolation from a Chebyshev grid to a uniformly spaced
one and vice-versa:

• To switch from the spectral subdomain to the WENO subdomain, the data
are interpolated onto the uniformly spaced grid via the spectral interpola-
tion formula.

• To switch from the WENO subdomain to the spectral subdomain, the
data are interpolated onto the Chebyshev Gauss-Lobatto points via the La-
grangian interpolation polynomial of the same order as the WENO method.

Remark 3 Back and forth switching between WENO and spectral discretiza-
tions may occur too frequently for the same domain when the εMR is marginally
set. The dk

i coefficients might oscillate around the parameter εMR in time due
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to some numerical factors such as dissipation, dispersion and nonlinear ef-
fects, or any combination of such. This pattern of switching can repeat itself
for a while until the solution settles down with a clear definition of the dk

i ,
which is either greater than or smaller than the MR tolerance εMR. In order to
alleviate such occurrences, one must devise a procedure preventing the switch
from WENO to spectral if it had already occurred recently. However, such pro-
cedure must never prevent a spectral to WENO switch, for oscillations and
instability might occur.

We end this section proceeding further with the temporal integration of the
inviscid Burgers Equation (47) to a final time t = 5 where the shock has al-
ready developed and performed an entire revolution at the periodical domain.
The numerical results are shown at figure 6 where we now have partitioned
the interval with 10 subdomains. Each spectral subdomain uses 17 points,
while the WENO ones use 40 points. Note that the Hybrid Method was able
to compute the exact location of the shock, demonstrating its conservative
property.
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Fig. 6. Inviscid Burgers Equation solution; The solution computed by the Hybrid
scheme is plotted with symbols against the exact solution in solid line. The er-
ror is plotted in dashed lines. Vertical dashed lines show the subdomains division.
Subdomains [0.2, 0.4], [0.4, 0.6] and [0.6, 0.8] are WENO, all others are Spectral.

6 Numerical Experiments

In this section we present numerical experiments with the system of Euler
Equations for gas dynamics in strong conservation form:

Qt + Fx = 0, (49)

where
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Q = (ρ, ρu, E)T , F = (ρu, ρu2 + P, (E + P )u)T , (50)

and the equation of state

P = (γ − 1)
(

E + 1
2
ρu2

)

, γ = 1.4. (51)

In all examples below, the physical domain is partitioned into a fixed number
of same size subdomains and the initial configuration of these subdomains
depends on the initial condition under consideration. Spectral subdomains
are discretized with Chebyshev-Gauss-Lobatto collocation points and WENO
subdomains use an uniform grid, where the classical fifth order characteristic-
wise WENO finite difference is applied. We shall use the same number of
uniformly spaced grid points NW for all WENO subdomains, as well as the
same number of Chebyshev collocation points NS at all spectral subdomains,
unless noted otherwise. The detection of discontinuities and high gradients
is performed through a fifth order Multi-Resolution Analysis applied to the
density function ρ. A 16 th order Exponential filter is employed in all spectral
subdomains.

To evolve in time the ODEs resulting from the semi-discretized PDEs, the
third order Total Variation Diminishing Runge-Kutta scheme (RK-TVD) will
be used [24]:

~U1 = ~Un + ∆tL(~Un)

~U2 =
1

4

(

3~Un + ~U1 + ∆tL(~U1)
)

, (52)

~Un+1 =
1

3

(

~Un + 2~U2 + 2∆tL(~U2)
)

where L is the spatial operator. CFL numbers for the spectral and WENO
subdomains are set to be 1 and 0.4, respectively. All results of the hybrid
method are compared with an exact solution or with a numerical solution
obtained with the classical WENO scheme with the same spatial resolution of
the hybrid scheme. This is achieved by using the same number of points for
the classical scheme as if all subdomains in the hybrid were of the WENO type
(see Section 5). The main goal of the numerical experiments below is to show
that the Hybrid method obtains equivalent solutions as the classical WENO
scheme, however at a lower computational cost. This is easily concluded from
the facts that spectral discretization is much more efficient than the finite
differences at smooth parts of the solution and that spectral subdomains avoid
the expensive characteristic decomposition of the WENO scheme.

In the figures shown for the one dimensional test cases, the spectral and
WENO subdomains are those denoted with red squares (2) and black trian-
gles (4) symbols respectively. The subdomains are also indicated by vertical
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dashed lines and major ticks on the x axis. Under each figure, the subdo-
mains configuration is indicated as a sequence of powers of S and W, where
the exponent means the number of consecutive subdomains of the same type.
This notation will make easier the counting of subdomain types when a large
number of subdomains is used.

6.1 SOD Tube Problem

We first consider the Sod problem of the Compressible Euler equations with
initial Riemann data:

(ρ, U, P ) =











( 0.125, 0, 0.1 ) −5 ≤ x < 0

( 1, 0, 1 ) 0 ≤ x < 5
. (53)

The physical domain [−5, 5] is partitioned into 5 equal subdomains. Since the
initial condition is discontinuous at the center of the physical domain, the
middle subdomain, [−1, 1], is set as WENO (Figure 7(a)). Here, NS = 16 and
NW = 110 and the MR tolerance was taken as εMR = 5 × 10−3.
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Fig. 7. The density profile of the Sod shock tube problem at times (a) t = 0, (b)
t = 0.39, (c) t = 0.54, (d) t = 1.46 and (e) t = 2 with 5 subdomains. NS = 16,
NW = 110 and εMR = 5 × 10−3. Spectral (2); WENO (4); The solid line is the
exact solution.

As time evolves, the initial density discontinuity develops into two jump dis-
continuities, the leftward moving shock front and contact discontinuity and a

25



rightward moving rarefaction wave, which is discontinuous in the first deriva-
tive (Figures 7(b) and (c)). Notice that when the discontinuities move on closer
to the boundary of the WENO subdomain [−1, 1], the neighboring spectral
subdomains are switched to WENO ones. At a later time, the discontinuities
have moved further to the left side of the physical domain, however the first
and last subdomains were kept as spectral ones, since none of them has been
”threatened” by the discontinuities.

6.2 123 Tube Problem

We now consider the 123 problem with initial Riemann data,

(ρ, U, P ) =











( 1, −2, 0.4 ) −5 ≤ x < 0

( 1, 2, 0.4 ) 0 ≤ x ≤ 5
. (54)

The solution consists of two rarefaction waves moving in opposite directions
which are generated at the center of the physical domain by a discontinuity
in the velocity.
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Fig. 8. The density profile of the 123 problem at times (a) t = 0, (b) t = 0.25, (c)
t = 0.29, (d) t = 0.62 and (e) t = 1 with 5 subdomains. NS = 16, NW = 110 and
εMR = 5 × 10−3. Spectral (2); WENO (4); The solid line is the exact solution.

Using the same setting as the Sod problem discussed in the previous example,
we compute the numerical solution up to t = 1. Figure 8(d) shows that the
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middle WENO subdomain [-1,1] is switched to spectral as soon as the rar-
efaction waves move away from the buffer zones of the neighboring domains.
Note also that the first and last spectral subdomains have a smaller number
of discretization points than the newly created spectral subdomain, showing
that the Hybrid scheme might also provide quantitative flexibility at the lo-
cal discretizations. Non-consecutive WENO subdomains can also have distinct
number of grid points.

6.3 Blastwaves Simulation

The one dimensional Blast waves interaction problem by Woodward and Col-
lela [17] has the following initial profile

(ρ, U, P ) =



























( 1, 0, 1000 ) 0 ≤ x < 0.1

( 1, 0, 0.01 ) 0.1 ≤ x < 0.9

( 1, 0, 100 ) 0.9 ≤ x ≤ 1.0

. (55)

The initial pressure gradients generate two density shock waves that collide
and interact later in time. In this experiment, the physical domain is subdi-
vided into 10 subdomains and the number of Chebyshev collocation points
and WENO uniform grid are NS = 16 and NW = 50, respectively. Reflective
boundary conditions are applied at both ends of the physical domain. Figure 9
shows that at the initial times, the expensive WENO discretizations are local-
ized around the density peaks, while the remaining subdomains are spectral.
At intermediate times, the left rarefaction wave spreads around, requiring the
use of more WENO subdomains, however, by the end of the simulation, we
have more spectral subdomains than WENO ones. It is clear from figure 9(c)
that one could decrease the number of discretization points at the first five
spectral subdomains, or take a step further and merge all the subdomains
at a single spectral one, increasing the numerical efficiency of the algorithm.
These improvements will be considered in future implementations of the Hy-
brid method.
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Fig. 9. The density profile of the Blastwave problem at times t = 0.014, t = 0.16
and t = 0.38 with 10 subdomains as indicated by the vertical dash lines, NS = 16,
NW = 50 and εMR = 5 × 10−3. Spectral (2); WENO (4); The solid line is the
solution computed using the classical WENO scheme with 500 points.

6.4 Shock-Entropy Wave Interaction

Consider the one dimensional Mach 3 shock-entropy wave interaction, specified
by the following initial conditions:

(ρ, u, P ) =











( 3.857143, 2.629369, 10.33333 ) −5 ≤ x < −4

( 1 + ε sin(kx), 0, 1 ) −4 ≤ x ≤ 15
, (56)

where x ∈ [−5, 15] , ε = 0.2 and k = 5. The solution of this problem consists
of shocklets and fine scales structures which are located behind a right-going
main shock. Figure 10 shows that the hybrid method is able to capture all
the smooth high frequency waves behind the main shock with spectral dis-
cretizations. Note that the WENO subdomains are located only at the main
shock and at the steep gradients of the N-waves. The hybrid method uses 40
subdomains, with NS = 16 and NW = 50. The solid black line is the solution
computed with the fifth order WENO scheme with 2000 grid points. Figures
10 (d) also shows that even with the great complexity of the solution, less
than 30% of the total number of subdomains are of the WENO type.

6.5 Shock-Vortex Interaction

We now show some previous results of the Hybrid method in more spatial
dimensions. A more detailed discussion will be reported at an upcoming arti-
cle. In this experiment, the multidomain hybrid configuration is applied to a
2D Shock-Vortex interaction. We consider a counter-clockwise rotating vortex
centered at (xc, yc), and strength Γ, with a tangential velocity profile [8] given
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Fig. 10. The density profile of the Mach 3 Shock-Entropy wave interaction at times
(a) t = 0, (b) t = 1.5, (c) t = 3.2 and (d) t = 4.5 with 40 subdomains, as indicated
by the vertical lines. NS = 16, NW = 50 and εMR = 5 × 10−3. Spectral (2); WENO
(4); The solid line is the solution computed with the fifth order WENO scheme
with 2000 grid points.

in polar coordinates by:

U(r) =



























Γr(r−2
0 − r−2

1 ) 0 ≤ r ≤ r0 < r1

Γr(r−2 − r−2
1 ) r0 ≤ r ≤ r1

0 r > r1

, (57)

where r0 = 0.2 and r1 = 1.0. The physical domain (0 ≤ x ≤ 3.9,−2 ≤ y ≤ 2) is
partitioned into a 13×10 grid of subdomains. Spectral and WENO subdomains
use a 32 × 32 grid of Chebyshev collocation points and a 50 × 50 uniform
grid, respectively. The Multi-Resolution analysis is performed with tolerance
εMR = 5 × 10−2.

We simulate a Mach 3 shock interacting with the vortex of strength Γ = 0.25
and compare the solution obtained by the hybrid method with the above setup
with a highly resolved solution using the classical fifth order characteristic-wise
WENO finite difference scheme with a 1200 × 1200 grid at final time t = 0.6
(Figure 11). The shock and the high gradient regions immediately behind
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the shock are well captured by the MR analysis, as indicated by the WENO
subdomains enclosed with black bounding boxes. The remaining subdomains
are accurately dealt with by the spectral method since all the essential small
and large scale structures of the flow field are correctly represented in the
hybrid solution. Once again, the number of WENO subdomains is far fewer
than the spectral ones, resulting in a more efficient algorithm than the classical
WENO scheme.

x

y

0 1 2 3 4
-2

-1

0

1

2

x

y

0 1 2 3 4
-2

-1

0

1

2

Fig. 11. Density contour of the Shock-Vortex interaction with Mach number Ms = 3
and vortex strength Γ = 0.25 at t = 0.6. Hybrid (Left); Classical WENO (Right).
WENO subdomains are denoted by bounding boxes.

7 Conclusions

We have presented the one dimensional version of the multi-domain spatial
and temporal adaptive Hybrid Spectral-WENO method for nonlinear systems
of hyperbolic conservation laws. The main idea is to partition the physical
domain into a grid of subdomains which are either a Chebyshev collocation
grid for the spectral method or an uniformly spaced grid for the high order
WENO method. High order Multi-Resolution Analysis is used to measure
the smoothness of the solution in a given subdomain in order to switch a
subdomain from spectral to WENO when the solution becomes non-smooth,
and vice versa. In this work, the Hybrid method was tested with the standard
shock-tube test problems, Shock-Entropy wave interaction problem and the
Blastwave problem. The results matched the ones computed by the classical
fifth order WENO finite difference method. Timing results will be given in
the upcoming paper in the two dimensional extension of the Hybrid method,
which is a much more meaningful measure than the one dimensional one.

Currently, we are investigating the role of the Multi-Resolution tolerance
parameterεMR and its effects on the Hybrid solution. Furthermore, the imple-
mentation of the smoothness measurements in the spectral subdomains can
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be improved and is under investigation. We plan to extend the Hybrid method
to nonlinear hyperbolic conservation laws system in higher dimensions with
higher orders WENO schemes.
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